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Unsteady viscous flow over a wavy wall 

By W.H.LYNE 
E.C.L.P. and Co. Ltd, St Austell, Cornwall 

(Received 1 7  May 1971) 

The method of conformal transformation is used to investigate the steady 
streaming generated by an oscillatory viscous flow over a wavy wall. By assuming 
that the amplitude of the wall is much smaller than the Stokes layer thickness, 
the equations are linearized and solved for large and small values of the parameter 
kR. This parameter is the ratio of the amplitude of oscillation of a fluid particle 
to the wavelength of the wall. When kR 4 1, the results due to Schlichting (1932) 
are recovered, and when ICR 9 1 the equatiions resemble closely those derived in 
the theory of stability of plane parallel flows. With the aid of this theory the first- 
order steady streaming is found. 

1. Introduction 
When a purely oscillatory viscous flow is set up over a curved surface the 

Reynolds stresses within the fluid generate a steady streaming. This has attracted 
the attention of several authors, notably Schlichting (1932), Riley (1965) and 
Stuart (1966). Although they principally considered flow over a cylinder, their 
conclusions are in general true for any two-dimensional surface. Their analyses 
all make use of the assumption that the amplitude of oscillation of a fluid particle 
far from the surface is much smaller than a typical dimension of that surface. 

In  order to  study the effect of allowing the amplitude of the oscillation to be 
much greater than such a dimension, we assume here that the surface is a small 
perturbation to an infinite flat plate. This enables us to use the method of con- 
formal transformations to solve the viscous flow equations, a method employed 
by Segel (1961). 

We recover the results due to Schlichting for small amplitudes of oscillation, 
but also discover that the problem at large amplitudes is tractable. In  facb we 
find that the theory is almost identical to that for the stability of plane parallel 
flows, and extensive use is made of existing knowledge of the latter to solve for 
the steady streaming. The difference lies in the order of magnitude of the time 
derivative, and this enables us to treat the time variable solely as a parameter. 
This important simplification allows us to follow closely the analysis of Benjamin 
(1959) who treated the steady problem. 

2. Formulation of the problem 

of which is defined by 
Let us consider two-dimensional viscous flow over an infinite wall, the surface 

y = a cos K X ,  (2.1) 
3 F L M  5 0  
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where x, y are rectangular Cartesian co-ordinates. Thus the wall has a wavelength 
2 n l ~  and an amplitude a. Writing z = x + iy, we consider the following conformal 
transformation [=  Y+i@ = z-iaeiKz. (2.2) 

If a is small, the Jacobian J of this transformation is 

J = Jd[/dz]2 = 1 + ~ C X K  e-Kw cos KX + O(a2) 

and, equating real and imaginary parts, we have 

Y = x + a e-KY sin ~ x ,  
CD = y - a e-KYcos ~ x .  1 

Hence we obtain 

The surface of the wall is now defined in these transformed co-ordinates by 
CD = O(a2) and, because we shall be neglecting terms of O(a2) in the following 
analysis, this may be replaced by @ = 0. 

Let u = (u, v) be the velocity vector in the transformed co-ordinate system. 
Thus u is the component of velocity in the Y increasing direction, and v is the 
component in the CD increasing direction. In  addition let p denote pressure, p the 
density of the fluid and Y its kinematic viscosity. The momentum equation for 
the flow is then 

au/at+grad(j$u2)-u x curlu = -(l/p)gradp-vcurlcurlu (2.6) 

J = 1 + 2 a ~  e-K(D cos KY + O(a2). (2.5) 

and the equation of continuity is 
divu = 0. 

Because the transformation is conformal, the line element ds in the transformed 
co-ordinates is 
and hence (2.7) becomes 

ds' = J-l(dY2 + dQ2) (2.8) 

J (2.9) 

21 = J%aX/aCD., v = - J&aX/aY (2.10) 

In  order to satisfy (2.9) we define a stream function X such that 

and if we now eliminate the pressurep from (2.6) by taking the curl of both sides 
of the equation, we obtain the following equation for X. 

(2.11) 

where 02 = a 2 / a y f 2 +  a21aw.  (2.12) 

The boundary conditions we wish to impose on the problem are the conditions 
of zero slip on the wall and, as y -+ co, the value of the velocity vector should be 
U, cos wt in the x direction. In  the transformed co-ordinate system these condi- 

tions become X =  aXp@ = 0 on @ =  0, 1 
(2.13) 

In addition only harmonic dependence on wt will be allowed. 
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Ifthewallwereflat,i.e. J = 1, thenthesolutionof(2*11)subjectto(2*13)would 
be the well-known Stokes shear-wave solution 

x = urn{@ cos ot + (v/w)t [eAu/zv)*Q, sin (ot - (w/2v)t CI + $ 7 ~ )  - sin (wt + ti.)]>. 
(2.14) 

We consider here the case where the amplitude of the wave a is finite but also 
a < O(Zv/w)t. In  other words the amplitude of the wave is much smaller than the 
thickness of the Stokes layer, and we may therefore expect (2.14) to be a first 
approximation to the solution. Since the Stokes layer has a characteristic 
dimension of O( 2v/w)), we may define the following non-dimensional notation : 

k=~(--), 2v t R = -  U,2) 
(VW)+’ J 

where R is the Reynolds number. 
Equation (2.11) now becomes 

2 R-1- a D2x - a ( x 9 J D 2 X )  = R-lD2( J D ~ x ) ,  
a7 a($, 7) 

where 

In  addition the boundary conditions (2.13) become 

D2 = a 2 l a @ 2  + a2/@2 and J = 1 + 2ake-kV cos k$ + O(u2). 

x = axla7 = o on 7 = 0, 

a’s y-+Oo. 
axlaP ax’a7 -+ -+ cosTl 0 

We now look for a solution to (2.16) of the form 

x = Xo+aX1+a2Xzf..., 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

remembering that for this problem a << 1. Substituting (2.19) into (2.16) and 
equating like powers of a we have, as our equation for xo, 

whose solution must satisfy the boundary conditions 

As expected, this h is just the Stokes shear-wave solution 

(2.20) 

(2.21) 

x0 = 7 COST + 23e-q  sin (7 - 7 + &r) - sin (7 + &)]. (2.22) 
3 -2 
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The equation of O(a) from (2.16) is 

= R-l{D4x1+ D2(2k e-kq cos k$D2xO)}, 

whose solution must satisfy the boundary conditions 

I x1 = ax,/aq = 0 on 7 = 0, 

a ~ ~ l a q  + O }  as q-fco. 
ax11w + 0 

We define U ( 7 , 7 )  = 8xo/ar], i.e. 

U(7 ,  7 )  = cos 7 - e-7 cos (7 - q ) ,  

then, following Benjamin (1959), we write 

x1 = 9 { F ( q , ~ ) +  U ( q , ~ ) e - ~ q e ~ ~ @ } ,  

where 9%’ denotes ‘real part of’. 
Equation (2.23) now becomes 

with boundary conditions 

F = 0, F‘ = - U’ on q = 0, 

as ~ - + c o ,  
F’ -+ 01 
F+OJ 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

where a prime denotes differentiation with respect to q. 
Equation (2.28) is almost identical to the Orr-Sommerfeld equation which 

arises in the theory of stability of plane parallel flows, and when the parameter 
kR is large we shall make use of this theory in solving the equation. This para- 
meter is clearly of considerable importance in deriving the steady streaming, 
and we may observe that kRI4rr is, in fact, the ratio ofthe amplitude of oscillation 
of the fluid far from the wall (UJw) to the wavelength of the wall ( ~ T / K ) .  

If we write the non-dimensional velocity u in the @ direction as 

u = uo+aul+a2u2+ ..., (2.29) 

then, as a consequence of (2.10), (2.15) and (2.17), we find that 

Hence, using (2 .25 )  and (2 .26) ,  we can see that 

and thus the dominant steady streaming is given by 

(2.30) 

(2.31) 

(2.32) 
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3. The steady streaming when LR 4 1 

When kR < 1, so that the wavelength of the wall is very much greater than the 
amplitude of oscillation of a fluid particle far from the wall, we look for a solution 

F(q,  T )  = Fo(q, T )  + ikR Fl(q, T )  + . .. . (3.1) 

When this is substituted into (2.27) and like powers of iLR are equated, we 
obtain the following equation for Fo: 

[2:- ( $ - k 2 ) ]  (&-k2) Fo = 0. 

I n  addition Fo must satisfy the following boundary conditions deduced from 
(2.28): Fo = 0, Fi = -2bcos(~+&f)  on 7 = 0,) 

Because we are admitting only those solutions which are periodic in r ,  we easily 

where v2 = k2+ 2i, Iargul < in-, and an overbar denotes 'complex conjugate'. 
The equation of O(ikR) obtained when (3.1) is substituted into (2.27) is 

[za- ($491 
with boundary conditions 

Fl = 

(5 - k2) E; = - U(FS - k2Fo) + UNG, (3.5) 

Substituting (3.4) into the right-hand side of (3.5) we find that Fl can be written 
as the sum of two terms, one of which is proportional to e2iT and has zero time 
average. This term gives no contribution to the steady streaming, and therefore 
attention is focused on the term independent of r which we denote by Fp). 

then we find 
Fls)(r) = P ( V )  +J;:")(r), (3.7) 

If we write 

(3.8) 
The solution of this is 

where the coefficients may easily be determined from (3.8) and the boundary 
conditions (3.6). 
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It is more instructive to consider the form of (3.9) when k is very large or very 
smali. We first consider the case when k 8 1, i.e. the wavelength of the wail is 
much smaller than the thickness of the Stokes layer. It can be seen that (3.9) is 
exponentially small unless y 6 O(l/lc) and so we define a new scaled variable 
y' = ky. This implies that the steady streaming associated with fp) is confined to 
a boundary layer whose thickness is of the order of a wavelength, and this is 
much smaller bhan the thickness of the Stokes layer. We find 

fp) - (1/24k4) (37 ,1 '~+7 '~ )e - f+O( l /k~)  (3.10) 

and hence, from (2.32), that the dominant steady streaming is 

up) - -(R/12k2)y'(6-y'2)e-fsink$-+O(R/k3). (3.11) 

This steady streaming is sketched in figure 1. 

I 
I 

FIGURE 1. Sketch of steady streaming when kR Q 1 and k $ 1. 

Let us now consider the case k < 1, i.e. the wavelength of the wall is much 
larger than the thickness of the Stokes layer. We see from (3.9) that fp) now 
consists of two parts. One of these decays to zero in a length scale of the order of 
the thickness of the Stokes layer (7 -+ m), whilst the other decays over a much 
larger length scale of the order of a wavelength (7' + 00). Thus we may expand 
fp) in powers of k in two regions: one where 7 N O(1) and the other where 
y' N O(1). 

Thus when y N O( l), the solution in the Stokes layer or inner region is 

fp) k( - Qy e-)I sin 7 - Ee-7 cos y - e-7 sin7 -2- e--27 +13- 32 3 16y}+O(lc2)  (3'12) 3 2  

and we therefore find that 

up) N +k2R{4y e-1) cos y - $7 e-'1 sin y - + e-7 cos y 

- 2 e-7 sin y - e-2T + $} sin k$ + O(k3R). (3.13) 

It can be shown that this is identical to the steady streaming predicted by the 
theory of Schlichting (1932) for oscillating flow over a curved boundary. This 
implies that, if k < 1 and kR < 1, no restriction need be placed on the amplitude 
of the wave a for Schlichting's theory to hold. 
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When 7' - O( 1) then we find that fp) may be written as 

fp) - --&y'e-q'+O(k) (3.14) 

and then up) - @?R( 1 - 7') e-7' sin Ic$ -I- O(k3R). (3.15) 

Therefore in this region the steady streaming generated within the Stokes layer 
decays to zero. The solution (3.15) was found by Schlichting (1932) when solving 
for flow in the outer region for small values of his steady streaming Reynolds 
number, but it is due originally to Rayleigh (1884) who studied an analogous 
problem. In both cases the stream function from which (3.15) is derived satisfies 
the biharmonic equation with 7' and + as independent variables. 

The steady streaming predicted by (3.13) and (3.15) is sketched in figure 2. 

FIGURE 2. Sketch of steady streaming when kR Q 1 and k 4 1. 

4. The solution when kR @ 1 

When kR is large, so that the amplitude of a fluid particle oscillation far from 
the wall is much greater than the wavelength of the wall, we may expect from 
(2.27) that the governing equation for the flow, away from any viscous boundary 
layers, is 

we will refer to this as the inviscid equation and its solutions as inviscid solutions. 
In  stability theory equation (4.1) is often referred to as the Rayleigh equation. 
We may note that, unlike the similar situation in stability theory, the time 
variable 7 appears only as a parameter in (4.1). This is because of our insistence 
on periodic solutions which implies that 8/87 N O( 1 )  and hence (2IikR) 8/87 < 1 in 
(2.27). This parametric property of r is important, for it means that we may make 
extensive use of the theory of Benjamin (1959) for the steady problem. 

As in stability theory (see, for example, Stuart 1963) equation (4.1) has a 
singular point at any posit,ion 7 = ?;lc where U = 0 and consequently its solutions 
cease to be approximate solutions to the full equation (2.27) even when kR is very 
large. In  fact we find by the method of Frobenius that the formal expansion of 

U(F"- k2F) - U"F = 0; (4.1) 



40 W .  H .  Lyne 

one of the solutions to (4.1) involves a term in (q - rc) log (7 - 7,) and so the correct 
form of the approximate solution is in doubt until the appropriate branch of the 
logarithm is decided. This ambiguity is resolved from a consideration of the full 
equation (2.27) in the vicinity of the critical point 7 = qc, this necessarily takes 
into account the effects of viscosity. Tollmien (1929) first demonstrated that if 
the logarithm is expressed as log (r - 7,) when 7 > re, then it is to be replaced by 
log (7, - 9) -in when 7 < qC providing 77: > 0 (a suffix c denotes ‘evaluated at  
7 = 7;). If UA < 0, then the logarithm is to be replaced by log (vc - 7) +in when 

7 < r e -  
In  order to solve (4.1) we make the further assumption that k < 1, so that the 

wavelength of the wall is much greater than the thickness of the Stokes layer. 
Then, following Benjamin (1959), we find that the solution to (4.1), which is 
uniformly valid in 7 and satisfies the boundary condition (2.28) at infinity, is 

where U, is the limit of U as 7 + 00 (U, = COST). This solution is due originally 
to Lighthill (1957). Although the integral in (4.2) is generally a second-order term, 
near a critical point 7 = rc it becomes dominant and a t  7 = re exactly the integral 
is infinite. However, as 7 + re the zero in U cancels the singularity in the integral, 
and the whole expression gives the finite value 

(4.3) F, = Ak( U%/U:) e--kvc 

r < r c ,  < r c ,  < I-. < TC, ,  

then to obtain a more explicit form of (4.2), we indent the path of integration by 
circuiting each singularity by a small semicircle, under the real axis if U &  > 0, 
above if Uii < 0. We find that (4.2) now becomes 

if U: =t= 0. If in (4.2) there exist rci,i = 1,2,  ...) n, such that Qi = 0 and 

where 9 denotes the ‘principal value’ of the integral in the sense of Hadamard 
(1923). This principal value is defined clearly by Mangler (1952) in his detailed 
analysis of certain types of integrals which arise in theoretical aerodynamics. The 
choice of contour is made so that the appropriate branch of the logarithm is 
chosen correctly on either side of 7 = T ~ ~ .  If there exists a critical point = re, 
where both Ue, and ULm are zero (but from (2.25) U:, + 0 ) ,  then we find that (4.4) 
must now include a term 

where the plus sign is taken if the contour is indented below the singularity, the 
minus sign if indented above. In  order to decide which of the contours to take, 
we would need to consider the solution of the full equation (2.27) near 9 = 7%. 
This is not examined here as we shall not, in fact, require the information. We 
note that F is singular a t  7 = re, as the differential equation (4.1) implies. 
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Near p = pc ,  and keeping r constant, it is possible to expand (4.4) in the 
following Taylor series, 

F - A[(p - p c )  UL + &(7 - p c ) z  U: + O(p - T , ) ~ ]  c k ? c  

+ A 4  Uz,/ m (1 + (C/ UL, (7 - T c )  1% (7 - T c )  + C(p - p c )  

+ OC(7 - 7J2log (7 -7c ) l )  c k 3 c +  O(k2) ,  (4.6) 

where C depends on r ;  the evaluation of C depends on the behaviour of the 
integrand in (4.4) over the whole of the range of integration and not just locally 
as with the other terms. It is not evaluated here and is included solely to demon- 
strate the procedure whereby (4.6) is matched onto a solution valid a t  the critical 
point p = qc. As mentioned before, when p < pc ,  log (7 -yC) is replaced by 
1og(pc--7)-inif Ug> O,andbylog(p,-q)+i;rrif U i <  0. 

Following Reid (1965), we introduce the small parameter 

8 = [ i k R u p ,  

args = -in 

args = +r 

(U; > 0) ,  

(UL < O),  

(4.7) 

and introduce the new scaled variables for the neighbourhood of 7 = 7c 

h = (7 - p c )  E-1, G = Pc'. (4.8) 

When these are substituted into (2.27) the singularity which is present in (4.1) no 
longer exists, for now the highest derivative is not lost but is of the same order as 
a retained inertial term (see (4.10)). In  addition, we may notice that r again 
appears only as a parameter, this being essential to the subsequent analysis, for, 
in deriving equations (4.10) to (4.12), we expand U as a Taylor series around 
9 = vc keeping r fixed. Thus the viscous effects associated with the critical points 
p c  are confined to thin layers of thickness O[E(~V/W)*]. 

We expand G in the following manner 

G = Goo+(~log l~l)Glo+~Gll+O(slog  IS^)^, (4.9) 

where the Gij are functions of h and T. If we substitute (4.9) into (2.27) and 
expand U in a Taylor series around p = qc keeping r fixed, then we obtain the 
following equations for the Gii on equating like powers of E ,  etc. 

(4.10) 

(4.11) 

(4.12) 

We will now focus attention onto the viscous layer formed on the wall, i.e. 
pe = 0. This will enable us to determine the function A(?) in (4.2) and (4.4). 
Therefore, in what follows, wherever a suffix c would have occurred we now use a 
suffix 0 to emphasize that we are considering this layer. We may deduce the 
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boundary conditions to be imposed on equations (4.10) to (4.12) from (2.28), and 
these are 

on h = 0,  I G,, = 0, aG,,p = - U; 
clj = a G , p  = o (j = 0, i), 

(4.13) 

together with the requirement tha t  G should match onto the inviscid solution F ,  
assuming a common region of validity. 

Following Reid (1 965), we may write the general solutions to (4.10) and (4.11) as 
Gio = ai,+bi,h+c,,/ A W /  A A i ( d ) d h + d , , / ~ ~ ~ h ~ ~ ~ A i ( n e l ' " ) d n  (i = 0, l), 

m, m, 
(4.14) 

where the a,,, etc. are functions of 7 which are chosen to satisfy the boundary and 
matching conditions. The function Ai ( A )  is the well-known Airy function and a 
property of this is that it is exponentially small a t  00 for larg A1 < $n, this being 
the sector in which co, lies. It is exponentially large elsewhere except on the lines 
larghl = +n and argh = -77. Thus Ai(he@") is exponentially small for 
- n < arg h < - in, this being the sector in which co2 lies. Thus we see from (4.7) 
and (4.8) that when U; > 0 we must insist that di, = 0 in order that the solution 
may not be exponentially large at  infinity and therefore impossible to match with 
the inviscid solution. In the same way when ZJ; < 0 we must insist that cio _= 0. 

We may further deduce from the well-known properties of the Airy function 
that when Cr; > 0, the boundary conditions (4.13) are satisfied by Go, and GI, if 

b,, -2n _ -  
(4.15) 

where P(z) is the gamma function, cf. Benjamin (1959). If UA < 0,  then the 
right-hand sides of the expressions in (4.15) must each contain a factor e%i". 

The general solution to (4.12) can be written as 

GI, = 2u'[ '," 2a,, e@n N (  h e-%) + boo A21 
0 + a,, + b,, + exponentially decaying terms, (4.16) 

where N ( z )  is just the function referred to by Stuart (1963), who reproduces a 
table of its values due to Holstein (1 950). This function is regular at the origin and 
has the following behaviour as Ihl -+ co: 

\ (4.17) 

In  order to make a meaningful match between these viscous solutions and the 
inviscid solution (4.4), we need to specify the size of k more carefully. In  fact we 

(4.18) 
assume here that 

where Ik'l N 0(1), but other scalings of k could be treated in a similar way to the 
following. Thus (4.4) gives the solution to the inviscid equation correct to o(@),  

N(he-Qin) - Ihl log(lhl), 

N(he-Qi.) - - 1 ~ 1  log(Ihl)+ni \ A \ ,  

argh = in; 

argh = -+.J 

k = sk', 
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and we may also note that the full solution to (4.1) would give the solution to 
(2.27) correct to 0(e3). 

We therefore expand A ( r )  in (4.4) as 

A(T) = Aoo(7) + (clog lei) A10(7) + cA11(~) + O(clog [€I 
and hence, writing (4.6) in terms of the viscous-layer variables (4.8) 
(4.18)) we have that as q -+ 0 the inviscid solution behaves like 

(4.19) 

and using 

+O(€log la[)2.  (4.20) 

Therefore, matching term by term with the solution for Q as h -+ co we have 

(4.21) 

In  addition, it can be seen that the terms involving log [ A (  and A2 in the O(E) factor 
are automatically matched by the solution for G,, (4.16)) when the property (4.17) 
is utilized. The matching could be continued in the same way to a higher order in 
e if desired. We may now deduce from (4.15) and (4.21) that 

(4.22) 

where the plus sign is taken if U; > 0, and the minus sign is taken if UA < 0. 

U; = 0. Near such a point 
We now consider what happens in the viscous layer near a point T = ro when 

u - q ( 7 - 7 0 )  [ ~ ~ ; / ~ T 1 . = , 0 + ~ 1 1 2 [ ~ ~ 1 7 = 7 0 +  *.. (4.23) 

and, in order to create a balance between the inertial and viscous terms in (2.27), 
we are led to the following scalings on r - r0 and q 

y = $'-I, H = PS-'. T = (T - r0) 8-1, (4.24) 

where 6 is a small parameter defined by 

(4.25) I S = {;kBIUi]T=To}-i, 

arg S = - in, [ u3,,,, > 0, 

argS = +in, [Ui]7=To < 0. 

Substituting (4.25), (4.24) and (4.23) into (2.27) the equation becomes 

(4.26) 
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noting that from our definition of U (2.25) 

(4.27) 

I n  addition, the boundary conditions to  be satisfied on the wall become, from 
(2.28) 

(4.28) 

The first-order equation for H is obtained by putting the right-hand side of 
(4.26) equal to  zero and we again note the important feature that the time 
variable T occurs only as a parameter. Four independent solutions to  this 
equation can be found in the form of contour integrals and are described in detail 
by Lyne (1970). However, these integrals can only be evaluated asymptotically 
and, for our purposes, hold no advantage over the following simpler analysis. 
We observe that one solution of (4.26) is 

HI = h(T)  [Ty -  iy , ] .  (4.29) 

We may infer from (4.26) that the other three solutions are regular a t  y = 0, and, 
by assuming the following behaviour of H as JyJ -+ co, 

H N y'ehl~+hzy2{a,+a,/y+ ...}, (4.30) 

we may show that they have the following asymptotic forms 

H, N y-l{b, + b,/y + . . .>, (4.31) 

H3 y-~(5-T' id2)e+(T~-B~~)/~Z{c,  + c 1 / Y +  ...>, (4.32) 

H4 y-&(6-Tpld2) e-(TY-ib')/~2(do + d,/y + . . .}, (4.33) 

where the a's etc., are functions of T. 
Because 7 > 0 we see from (4.24) and (4.25) that, if T - O ( l ) ,  *hen di = 0 in 

order that  H may not be exponentially large and therefore impossible to  match 
with the inviscid solution. That the function H does match naturally onto the 
inviscid solution F may be seen by expanding (4.4) with (4.5) a t  r = ro for small 7 

F - A ( - [ - - - - +  2kU2, 1 2u: (2 -(-) u: 2 - ; 3 7  
3u; 7 3u; \3  u; 

I + [ G  4 (%) u; 2 -;-]72log7] +O(?y)+O(k2)  . (4.34) 

Writing this in the scaled variables (4.24) we have when 7 - 0 

H N O(AkS-Z/y). (4.35) 

The expression (4.18) implies that  k is O(84) and, since the boundary conditions 
(4.28) imply that H is O(S),  we therefore require that 

A = O(S%), (4.36) 

in order that  the inviscid solution should match onto H 2  in (4.31). However, when 
UA - - STU; (see (4.27)), we see from (4.22) that  

A,, = O(S8). (4.37) 
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Thus the leading term in an expansion for A in terms of the small parameter 6 
near 7 = 70 is of the same order of magnitude as that predicted by the leading 
term in an expansion in terms of E elsewhere. This fact is of particular significance 
when we come to evaluate the steady streaming associated with this flow. 

The expression (4.36) also implies that the function HI of (4.29) must be of 
O(68) in order that it may match onto the dominant term in q2 of (4.34). (8' is 
expanded at 7 = 70 in (4.34) and so T = 0 in the expression for Hl.)  Thus Hl is not 
present in the h t -order  solution. The two remaining functions H2 (4.31) and 
H3 (4.32) (H4 was dismissed because it was exponentially large at  infinity) can 
now be made to satisfy the boundary conditions (4.28), and this gives rise to the 
value of the leading term in an expansion for A. 

We may also see how this first-order solution for H matches onto the viscous 
solution Goo as (TI -+ CO. If we use the W.K.B. method and assume that for 
argy = -in (U," < 0) and argT = -3. (7 > 70) 

g(T)e"(~) , ( r ) ( fo(y)+( l /JT) f , (Y)+ ... 1, (4.38) 
then we find that 

(4.39) 

where the g, are functions of T. We may see immediately that g4 = 0 otherwise H 
would be exponentially large. If we write the expression for Goo (4.14) in terms of 
the scaled variables (4.24), then we find that, for UA N - STU," > 0 

H N g1 +g2 y +ga y-*exp ( - Z j  I T ~ ~ ~ I  ,kin) +g4 y-Sexp ( + 6 ITysl egin), 

H N O(6) + O ( @ )  + O(6) Ai ( A )  dh (4.40) 

and we may show that for large T the double integral gives rise to the following 
asymptotic representation 

H N O(6) + O(6g) y + O(8) y-2 exp ( - Z j  1 Ty*l ,tin) (4.41) 

(see Reid 1965). 
Thus as well as ensuring a match with (4.39) we see that it is also consistent with 

H being O(8). In  addition the O(6Q) y term again demonstrates the order of 
magnitude of Hl with which it must match, and this agrees with the order of 
magnitude found previously. We may perform similar analyses when either 
U: > 0 or 7 < 70 (or both) and we find again that the functions match onto each 
other consistently. 

Thus this first-order solution for H ,  though not found explicitly, satisfies all 
our requirements: it satisfies the boundary conditions on the wall and matches 
onto both the inviscid solution F and theviscous solution Goo. It also enables us to 
find the leading term in an expansion for the function A in (4.4) when 7 N 70 and, 
as mentioned before, the important feature of this is that its order of magnitude 
is the same as that predicted by the leading term in an expansion elsewhere. 

The physical significance of this region of thickness 0[6(2v /w)*]  near 7 = 70 is 
that it  represents the creation of another viscous layer of thickness O [ E ( ~ V / W ) ] ~ .  
This breaks away from the viscous layer on the wall and propagates into the 
inviscid region moving with the point q = qC1(7) where V,. = 0. After a certain 
length of time a point is reached where q, is again zero and now the viscous layer 
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combines with another layer a t  q = re, and they both disappear. They reappear 
later as the two layers a t  q = qc, and qc, respectively. It should be noted that 
during part of the period of oscillation there are no viscous layers away from the 
wall, whilst at other times there may be several. Indeed, when Urn = 0 there are 
an infinite number although their effect decays exponentially away from the wall. 

We may easily see from matching with (4.6) that the viscous solutions Gij given 
in (4.14) and (4.16) are immediately applicable for the solution of (4.10)-(4.12) 
in the viscous layers away from the wall. As we should expect, we find that the 
Airy function solutions are not required. If one had existed and decayed 
exponentially for r] > qo then it would have increased exponentialIy for r] < qc 
and this would have been intolerable. Similarly, the first-order solution H, (4.31) 
to the equation (4.26) is directly applicable in the regions where the viscous layers 
are either emerging or disappearing. As before, a t  the inception of such a region 
H, is matched to the fist-order viscous solution Goo, but at its conclusion it now 
has to be matched onto the inviscid solution F .  However, on closer investigation 
we see that these are now identical to f i s t  order in E ,  and thus the matching is, in 
fact, unaffected. Because A,, is now O( 1 )  near such a region, we see from matching 
that H, must be O(S-8) and this is O(6-g) greater than in the equivalent region 
on the wall. 

5. The steady streaming when k R  B 1 

We now concentrate on the evaluation of the steady streaming associated with 
this flow away from the viscous layer on the wall. From (2.32) we may see that 
if there were no viscous layers then the contribution of O(a) would be given by 

F being the inviscid solution and 9 denoting ‘real part of’. However, as men- 
tioned previously, near the viscous layer a t  a point q = ye, the inviscid solution 
is identical to the viscous solution to first order in E .  Therefore, using (4.4) and 
(4.19), we find that the dominant contribution to the steady streaming is 

the neglected terms being of O(lcR)-*. Strictly, we do not know the value of the 
leading term for A in a region near the time T,  when UA = 0, but we inferred from 
(4.36) and (4.37) that it was the same order of magnitude as that predicted by A,,,. 
More explicitly it is of O(69) and, because such a region exists for a time of 
0(6) ,  the error incurred from this source when using (5.2) is of O(6:). This is 
O(kR)-%)  and is much smaller than the effect of the neglected terms. Should, 
however, the integration pass through a region where U;  N 0 then the use of 
(5.2) must involve an error of O(SH). We saw from the matching conditions 
outlined above that H is O(6-4) and so the error is O(6f). Because this is O ( k R ) - A  
it is very much larger than the error of O(kB) - f  from the neglected terms. Never- 
theless, when kR 9 1, it is still vanishingly small compared to (5.2). 
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Using (2.25) and (4.22) we find that we can write (5.2) as 

up) = - - A sin (in) e--(l+k)q sin k+ 28 
7r 

9 (5.3) 
cos (t - q )  cosQ t( 1 + sin at) 

{~~, ,cos i ' t+2Acos t t ( l  +sin2t)cos(~n)+AZ(1+sin2t)zdt) 

k ( k R ) t  
where A =  (5.4) 283; r(3). 
More graphically 

UP' = - k(kR)t e-(l+k)q{Il cos q + Iz sin q)  sin k$, (5 .5 )  

where the integrals Il and la may be evaluated numerically. These have been 
tabulated for a range of A by Lyne (1970). 

FIGURE 3. Sketch of steady streaming when kR 1 and k(kR)* N O(1). 
Luu = viscous layer of thickness O(kB)-* (2v/o)&. 

It is of some interest to evaluate (5.5) when k(kR)a < 1, and after lengthy 
analyses given in detail by Lyne, we find 

= - nt r(g) k(kR)' [cos q + # sin q] e--(l+k)q sin k$+ O[k(kR)*]9 (5.6) 2 ~ [ r  (+ 112 

and this gives 

up) = - 0.5927 k ( k R ) )  [cos q + 4 sin 71 e--(l+k)T sin k+ + O[k(kR)*]%. (5.7) 

To summarize, the dominant steady streaming is of O(a), and, if we assume 
k - O(kR)-* then, away from the viscous layer on the wall, it  is given by (5.5) 
when k R  > 1. The error is O(kR)-* almost everywhere, but, if q is within a 
distance O(kR) - )  from a point where, at some time during a cycle, both U and U' 
are zero, then the error is of O(kR)-i%. This may be quite considerable even for 
very large values of k R .  Should we then take k(lcR)* < 1, the steady streaming 
would be given by (5.7). Because the error is O[k(kR) t ]* ,  this too may be quite 
large even for very small values of k ( k R ) i .  A sketch of the steady streaming 
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predicted by (5.5) is given in figure 3 and shows a stacked structure of regions 
of recirculation the magnitudes of the circulations decreasing exponentially 
away from the wall. 

6. Discussion 
In  all three cases considered the steady streaming is in the same direction 

immediately adjacent to the wall. When ER < 1, the streaming is confined to a 
layer of thickness O(K)-~ or the wavelength of the wall, and if this is much smaller 
than the thickness of the Stokes layer (2v/w)*, only one region of recirculation 
exists (figure 1). When the wavelength is much greater than the Stokes layer 
thickness, two regions of recirculation exist (figure 2),  that nearest the wall being 
confined to the Stokes layer. As pointed out previously, this steady streaming 
was first evaluated by Schlichting (1932). 

When kR 9 1 and k(ER)* N O(l),  the steady streaming takes on a differenb 
character. Although confined within the Stokes layer, it now consists of several 
regions of recirculation of equal thickness (figure 3). This recirculatory flow is 
driven from within a thin viscous layer of thickness O(kR)-* (2v/w)* formed on 
the wall, and this thickens to O(kR)- t  (2v/w)4 when U‘ N 0. At some time during 
a period of oscillation there may exist one or more such viscous layers away from 
the wall. However, these layers adopt a passive role serving merely to eliminate 
the singularity arising from the inviscid equation (4.1). This is unlike the similar 
situation in stability theory and is a natural result of our insistence on periodic 
solutions. 
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